ChatterBot聊天機器人呢結構(五):ChatterBot對話流程

創建機器人

部署機器人的各種屬性,根據前面的章節里聊天機器人的各種屬性,對聊天機器人進行相應的配置,創建一個符合自己的機器人。

bot = ChatBot(
    'Default Response Example Bot',
    storage_adapter='chatterbot.storage.SQLStorageAdapter',
    logic_adapters=[
        {
            'import_path': 'chatterbot.logic.BestMatch'
        },
        {
            'import_path': 'chatterbot.logic.LowConfidenceAdapter',
            'threshold': 0.65,
            'default_response': 'I am sorry, but I do not understand.'
        }
    ],
    trainer='chatterbot.trainers.ListTrainer'
)
logic_adapters

logic_adapters:用來設置所選擇的算法,這里選擇的是chatterbot.logic.BestMatch,也就是最匹配方式,從訓練的對話中找到最相識的語句,根據對話,提供回答。

trainer

trainer:選擇的是chatterbot.trainers.ListTrainer

在trainer中,決定選擇哪種構造方式來創建上下文的關系。

def train(self, conversation):
    """
    Train the chat bot based on the provided list of
    statements that represents a single conversation.
    """
    previous_statement_text = None

    for conversation_count, text in enumerate(conversation):
        print_progress_bar("List Trainer", conversation_count + 1, len(conversation))

        statement = self.get_or_create(text)

        if previous_statement_text:
            statement.add_response(
                Response(previous_statement_text)
            )

        previous_statement_text = statement.text
        self.storage.update(statement)

在ListTrainer中,用上下句來構建一個statement ,statement相當于存儲了一個上下對話的關系,在查找的時候,先找到最合適的上文,下文就是答案了。這就是一個訓練的過程,訓練的這一過程,主要是在構建statement,并把statement放到storage中。

storage_adapter

storage_adapter有幾種可選的方案chatterbot.storage.SQLStorageAdapter,MongoDatabaseAdapter,存儲之前訓練的statement,把statement存儲在數據庫中,默認的數據庫選擇的是本地的sqlite3。

訓練機器人

把語料準備好,就聊天機器人進行訓練,語料的來源比較重要,像之前的小黃鴨語料的來源,主要是來源于眾包,用戶會交小黃鴨怎么去回答問題,語料是重要的一種選擇,一個語料的質量決定了聊天機器人的可玩性。

訓練的過程,就是一個建立statement并存儲的過程,代碼在ListTrainer中都有詳細的體現。

bot.train([
    'How can I help you?',
    'I want to create a chat bot',
    'Have you read the documentation?',
    'No, I have not',
    'This should help get you started: http://chatterbot.rtfd.org/en/latest/quickstart.html'
])

產生答案

聊天機器人主要的過程是產生答案的過程,而答案的選擇最關鍵的就是算法的實現,之前有介紹過,可玩性比較高的聊天機器人必須擁有不同的算法,對不同的聊天內容給出不一樣的答案,根據輸入選擇最合適的算法,產生最好的答案。在機器人對話中,最常見的問題是一些生活的問題,比如,天氣,時間,笑話等,根據問題,選擇最匹配的算法,給出精彩的答案。

response = bot.get_response('How do I make an omelette?')

get_response的過程

采用的是ChatBot的方法,一開始先得到輸入,并對數據進行過濾,在根據輸入數據選擇算法,得出答案。

def get_response(self, input_item, session_id=None):
    """
    Return the bot's response based on the input.

    :param input_item: An input value.
    :returns: A response to the input.
    :rtype: Statement
    """
    if not session_id:
        session_id = str(self.default_session.uuid)

    input_statement = self.input.process_input_statement(input_item)

    # Preprocess the input statement
    for preprocessor in self.preprocessors:
        input_statement = preprocessor(self, input_statement)

    statement, response = self.generate_response(input_statement, session_id)

    # Learn that the user's input was a valid response to the chat bot's previous output
    previous_statement = self.conversation_sessions.get(
        session_id
    ).conversation.get_last_response_statement()
    self.learn_response(statement, previous_statement)

    self.conversation_sessions.update(session_id, (statement, response, ))

    # Process the response output with the output adapter
    return self.output.process_response(response, session_id)

算法是如何進行選擇的呢? 在multi_adapter.py 算法選擇中,遍歷了所有我們已經選擇的算法,算法通過 can_process 進行選擇,對輸入生成的statement 進行匹配,并通過confidence來進行評分,而應該還可以進行擴展,通過不同的得分,來選擇算法,最佳匹配。

def process(self, statement):
    """
    Returns the output of a selection of logic adapters
    for a given input statement.

    :param statement: The input statement to be processed.
    """
    results = []
    result = None
    max_confidence = -1

    for adapter in self.get_adapters():
        if adapter.can_process(statement):

            output = adapter.process(statement)

            if type(output) == tuple:
                warnings.warn(
                    '{} returned two values when just a Statement object was expected. '
                    'You should update your logic adapter to return just the Statement object. '
                    'Make sure that statement.confidence is being set.'.format(adapter.class_name),
                    DeprecationWarning
                )
                output = output[1]

            results.append((output.confidence, output, ))

            self.logger.info(
                '{} selected "{}" as a response with a confidence of {}'.format(
                    adapter.class_name, output.text, output.confidence
                )
            )

            if output.confidence > max_confidence:
                result = output
                max_confidence = output.confidence
        else:
            self.logger.info(
                'Not processing the statement using {}'.format(adapter.class_name)
            )

    # If multiple adapters agree on the same statement,
    # then that statement is more likely to be the correct response
    if len(results) >= 3:
        statements = [s[1] for s in results]
        count = Counter(statements)
        most_common = count.most_common()
        if most_common[0][1] > 1:
            result = most_common[0][0]
            max_confidence = self.get_greatest_confidence(result, results)

    result.confidence = max_confidence
    return result

ChatterBot的架構和流程基本清楚以后,就是對ChatterBot的擴展,一個好的ChatterBot聊天機器人,還有很多需要完成的地方,比如多輪對話,

我:天氣如何?

機器人:你在位置在那里?

我:廈門

機器人:多云轉晴,32攝氏度

轉載請標明來之:http://www.peyycv.tw/

更多教程:阿貓學編程

ChatterBot聊天機器人結構 系類文章

所有評論

如果對文章有異議,請加qq:1752338621